Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(14): 6237-6250, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35362954

RESUMO

Chronically elevated circulating fatty acid levels promote lipid accumulation in nonadipose tissues and cause lipotoxicity. Adipose triglyceride lipase (ATGL) critically determines the release of fatty acids from white adipose tissue, and accumulating evidence suggests that inactivation of ATGL has beneficial effects on lipotoxicity-driven disorders including insulin resistance, steatohepatitis, and heart disease, classifying ATGL as a promising drug target. Here, we report on the development and biological characterization of the first small-molecule inhibitor of human ATGL. This inhibitor, designated NG-497, selectively inactivates human and nonhuman primate ATGL but not structurally and functionally related lipid hydrolases. We demonstrate that NG-497 abolishes lipolysis in human adipocytes in a dose-dependent and reversible manner. The combined analysis of mouse- and human-selective inhibitors, chimeric ATGL proteins, and homology models revealed detailed insights into enzyme-inhibitor interactions. NG-497 binds ATGL within a hydrophobic cavity near the active site. Therein, three amino acid residues determine inhibitor efficacy and species selectivity and thus provide the molecular scaffold for selective inhibition.


Assuntos
Aciltransferases/antagonistas & inibidores , Adipócitos , Ácidos Graxos/metabolismo , Lipólise , Aciltransferases/metabolismo , Adipócitos/metabolismo , Animais , Humanos , Lipólise/fisiologia , Camundongos
2.
Proc Natl Acad Sci U S A ; 112(45): 13850-5, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26508640

RESUMO

Adipose triglyceride lipase (ATGL) initiates intracellular triglyceride (TG) catabolism. In humans, ATGL deficiency causes neutral lipid storage disease with myopathy (NLSDM) characterized by a systemic TG accumulation. Mice with a genetic deletion of ATGL (AKO) also accumulate TG in many tissues. However, neither NLSDM patients nor AKO mice are exceedingly obese. This phenotype is unexpected considering the importance of the enzyme for TG catabolism in white adipose tissue (WAT). In this study, we identified the counteracting mechanisms that prevent excessive obesity in the absence of ATGL. We used "healthy" AKO mice expressing ATGL exclusively in cardiomyocytes (AKO/cTg) to circumvent the cardiomyopathy and premature lethality observed in AKO mice. AKO/cTg mice were protected from high-fat diet (HFD)-induced obesity despite complete ATGL deficiency in WAT and normal adipocyte differentiation. AKO/cTg mice were highly insulin sensitive under hyperinsulinemic-euglycemic clamp conditions, eliminating insulin insensitivity as a possible protective mechanism. Instead, reduced food intake and altered signaling by peroxisome proliferator-activated receptor-gamma (PPAR-γ) and sterol regulatory element binding protein-1c in WAT accounted for the phenotype. These adaptations led to reduced lipid synthesis and storage in WAT of HFD-fed AKO/cTg mice. Treatment with the PPAR-γ agonist rosiglitazone reversed the phenotype. These results argue for the existence of an adaptive interdependence between lipolysis and lipid synthesis. Pharmacological inhibition of ATGL may prove useful to prevent HFD-induced obesity and insulin resistance.


Assuntos
Adaptação Fisiológica , Dieta Hiperlipídica , Comportamento Alimentar , Lipase/fisiologia , Lipólise , Obesidade/prevenção & controle , Animais , Lipase/genética , Camundongos , Camundongos Knockout , Obesidade/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Fenótipo
3.
J Biol Chem ; 290(30): 18438-53, 2015 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-25953897

RESUMO

The coordinated breakdown of intracellular triglyceride (TG) stores requires the exquisitely regulated interaction of lipolytic enzymes with regulatory, accessory, and scaffolding proteins. Together they form a dynamic multiprotein network designated as the "lipolysome." Adipose triglyceride lipase (Atgl) catalyzes the initiating step of TG hydrolysis and requires comparative gene identification-58 (Cgi-58) as a potent activator of enzyme activity. Here, we identify adipocyte-type fatty acid-binding protein (A-Fabp) and other members of the fatty acid-binding protein (Fabp) family as interaction partners of Cgi-58. Co-immunoprecipitation, microscale thermophoresis, and solid phase assays proved direct protein/protein interaction between A-Fabp and Cgi-58. Using nuclear magnetic resonance titration experiments and site-directed mutagenesis, we located a potential contact region on A-Fabp. In functional terms, A-Fabp stimulates Atgl-catalyzed TG hydrolysis in a Cgi-58-dependent manner. Additionally, transcriptional transactivation assays with a luciferase reporter system revealed that Fabps enhance the ability of Atgl/Cgi-58-mediated lipolysis to induce the activity of peroxisome proliferator-activated receptors. Our studies identify Fabps as crucial structural and functional components of the lipolysome.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Lipase/metabolismo , Complexos Multiproteicos/metabolismo , Triglicerídeos/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , Tecido Adiposo/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas de Ligação a Ácido Graxo/genética , Humanos , Ligantes , Lipase/genética , Lipólise/genética , Lipossomos/metabolismo , Camundongos , Complexos Multiproteicos/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Proteólise
4.
J Hepatol ; 63(2): 437-45, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25733154

RESUMO

BACKGROUND & AIMS: Adipose tissue (AT)-derived fatty acids (FAs) are utilized for hepatic triacylglycerol (TG) generation upon fasting. However, their potential impact as signaling molecules is not established. Herein we examined the role of exogenous AT-derived FAs in the regulation of hepatic gene expression by investigating mice with a defect in AT-derived FA supply to the liver. METHODS: Plasma FA levels, tissue TG hydrolytic activities and lipid content were determined in mice lacking the lipase co-activator comparative gene identification-58 (CGI-58) selectively in AT (CGI-58-ATko) applying standard protocols. Hepatic expression of lipases, FA oxidative genes, transcription factors, ER stress markers, hormones and cytokines were determined by qRT-PCR, Western blotting and ELISA. RESULTS: Impaired AT-derived FA supply upon fasting of CGI-58-ATko mice causes a marked defect in liver PPARα-signaling and nuclear CREBH translocation. This severely reduced the expression of respective target genes such as the ATGL inhibitor G0/G1 switch gene-2 (G0S2) and the endocrine metabolic regulator FGF21. These changes could be reversed by lipid administration and raising plasma FA levels. Impaired AT-lipolysis failed to induce hepatic G0S2 expression in fasted CGI-58-ATko mice leading to enhanced ATGL-mediated TG-breakdown strongly reducing hepatic TG deposition. On high fat diet, impaired AT-lipolysis counteracts hepatic TG accumulation and liver stress linked to improved systemic insulin sensitivity. CONCLUSIONS: AT-derived FAs are a critical regulator of hepatic fasting gene expression required for the induction of G0S2-expression in the liver to control hepatic TG-breakdown. Interfering with AT-lipolysis or hepatic G0S2 expression represents an effective strategy for the treatment of hepatic steatosis.


Assuntos
Tecido Adiposo/metabolismo , Jejum/metabolismo , Ácidos Graxos/metabolismo , Fígado Gorduroso/genética , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica , Fígado/metabolismo , Animais , Western Blotting , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Fatores de Crescimento de Fibroblastos/biossíntese , Genes de Troca , Fígado/ultraestrutura , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , RNA/genética , Reação em Cadeia da Polimerase em Tempo Real
5.
J Lipid Res ; 55(11): 2229-41, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25176985

RESUMO

Fibroblast growth factor 21 (FGF21) is a PPARα-regulated gene elucidated in the liver of PPARα-deficient mice or PPARα agonist-treated mice. Mice globally lacking adipose triglyceride lipase (ATGL) exhibit a marked defect in TG catabolism associated with impaired PPARα-activated gene expression in the heart and liver, including a drastic reduction in hepatic FGF21 mRNA expression. Here we show that FGF21 mRNA expression is markedly increased in the heart of ATGL-deficient mice accompanied by elevated expression of endoplasmic reticulum (ER) stress markers, which can be reversed by reconstitution of ATGL expression in cardiac muscle. In line with this assumption, the induction of ER stress increases FGF21 mRNA expression in H9C2 cardiomyotubes. Cardiac FGF21 expression was also induced upon fasting of healthy mice, implicating a role of FGF21 in cardiac energy metabolism. To address this question, we generated and characterized mice with cardiac-specific overexpression of FGF21 (CM-Fgf21). FGF21 was efficiently secreted from cardiomyocytes of CM-Fgf21 mice, which moderately affected cardiac TG homeostasis, indicating a role for FGF21 in cardiac energy metabolism. Together, our results show that FGF21 expression is activated upon cardiac ER stress linked to defective lipolysis and that a persistent increase in circulating FGF21 levels interferes with cardiac and whole body energy homeostasis.


Assuntos
Estresse do Retículo Endoplasmático , Fatores de Crescimento de Fibroblastos/genética , Homeostase , Miocárdio/citologia , Miocárdio/metabolismo , Ativação Transcricional , Triglicerídeos/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Metabolismo Energético , Jejum/metabolismo , Ácidos Graxos/metabolismo , Feminino , Glucose/metabolismo , Lipase/deficiência , Masculino , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Especificidade de Órgãos , Oxirredução , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
6.
J Biol Chem ; 288(14): 9892-9904, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23413028

RESUMO

Efficient catabolism of cellular triacylglycerol (TG) stores requires the TG hydrolytic activity of adipose triglyceride lipase (ATGL). The presence of comparative gene identification-58 (CGI-58) strongly increased ATGL-mediated TG catabolism in cell culture experiments. Mutations in the genes coding for ATGL or CGI-58 in humans cause neutral lipid storage disease characterized by TG accumulation in multiple tissues. ATGL gene mutations cause a severe phenotype especially in cardiac muscle leading to cardiomyopathy that can be lethal. In contrast, CGI-58 gene mutations provoke severe ichthyosis and hepatosteatosis in humans and mice, whereas the role of CGI-58 in muscle energy metabolism is less understood. Here we show that mice lacking CGI-58 exclusively in muscle (CGI-58KOM) developed severe cardiac steatosis and cardiomyopathy linked to impaired TG catabolism and mitochondrial fatty acid oxidation. The marked increase in ATGL protein levels in cardiac muscle of CGI-58KOM mice was unable to compensate the lack of CGI-58. The addition of recombinant CGI-58 to cardiac lysates of CGI-58KOM mice completely reconstituted TG hydrolytic activities. In skeletal muscle, the lack of CGI-58 similarly provoked TG accumulation. The addition of recombinant CGI-58 increased TG hydrolytic activities in control and CGI-58KOM tissue lysates, elucidating the limiting role of CGI-58 in skeletal muscle TG catabolism. Finally, muscle CGI-58 deficiency affected whole body energy homeostasis, which is caused by impaired muscle TG catabolism and increased cardiac glucose uptake. In summary, this study demonstrates that functional muscle lipolysis depends on both CGI-58 and ATGL.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Lipase/metabolismo , Lipólise/fisiologia , Triglicerídeos/metabolismo , Tecido Adiposo/enzimologia , Animais , Cardiomiopatias/metabolismo , Ecocardiografia/métodos , Feminino , Glucose/metabolismo , Homeostase , Hidrólise , Metabolismo dos Lipídeos , Lipídeos/química , Masculino , Camundongos , Mitocôndrias/metabolismo , Músculos/enzimologia , Músculos/metabolismo , Miocárdio/metabolismo , Consumo de Oxigênio
7.
Biochim Biophys Acta ; 1821(1): 113-23, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21586336

RESUMO

In mammals, dietary vitamin A intake is essential for the maintenance of adequate retinoid (vitamin A and metabolites) supply of tissues and organs. Retinoids are taken up from animal or plant sources and subsequently stored in form of hydrophobic, biologically inactive retinyl esters (REs). Accessibility of these REs in the intestine, the circulation, and their mobilization from intracellular lipid droplets depends on the hydrolytic action of RE hydrolases (REHs). In particular, the mobilization of hepatic RE stores requires REHs to maintain steady plasma retinol levels thereby assuring constant vitamin A supply in times of food deprivation or inadequate vitamin A intake. In this review, we focus on the roles of extracellular and intracellular REHs in vitamin A metabolism. Furthermore, we will discuss the tissue-specific function of REHs and highlight major gaps in the understanding of RE catabolism. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Vitamina A/metabolismo , Tecido Adiposo/metabolismo , Animais , Transporte Biológico , Olho/metabolismo , Homeostase , Humanos , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Ratos , Pele/metabolismo
8.
Nat Med ; 17(9): 1076-85, 2011 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-21857651

RESUMO

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that regulate genes involved in energy metabolism and inflammation. For biological activity, PPARs require cognate lipid ligands, heterodimerization with retinoic X receptors, and coactivation by PPAR-γ coactivator-1α or PPAR-γ coactivator-1ß (PGC-1α or PGC-1ß, encoded by Ppargc1a and Ppargc1b, respectively). Here we show that lipolysis of cellular triglycerides by adipose triglyceride lipase (patatin-like phospholipase domain containing protein 2, encoded by Pnpla2; hereafter referred to as Atgl) generates essential mediator(s) involved in the generation of lipid ligands for PPAR activation. Atgl deficiency in mice decreases mRNA levels of PPAR-α and PPAR-δ target genes. In the heart, this leads to decreased PGC-1α and PGC-1ß expression and severely disrupted mitochondrial substrate oxidation and respiration; this is followed by excessive lipid accumulation, cardiac insufficiency and lethal cardiomyopathy. Reconstituting normal PPAR target gene expression by pharmacological treatment of Atgl-deficient mice with PPAR-α agonists completely reverses the mitochondrial defects, restores normal heart function and prevents premature death. These findings reveal a potential treatment for the excessive cardiac lipid accumulation and often-lethal cardiomyopathy in people with neutral lipid storage disease, a disease marked by reduced or absent ATGL activity.


Assuntos
Cardiomiopatias/metabolismo , Ácidos Graxos/metabolismo , Lipase/metabolismo , Mitocôndrias/fisiologia , PPAR alfa/metabolismo , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo , Animais , Western Blotting , Cardiomiopatias/etiologia , Primers do DNA/genética , DNA Complementar/genética , DNA Mitocondrial/genética , Ecocardiografia , Dosagem de Genes , Lipase/genética , Luciferases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Miócitos Cardíacos/fisiologia , Oxirredução , Consumo de Oxigênio/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sarcolema/fisiologia
9.
J Biol Chem ; 286(20): 17467-77, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21454566

RESUMO

Monoglyceride lipase (MGL) influences energy metabolism by at least two mechanisms. First, it hydrolyzes monoacylglycerols (MG) into fatty acids and glycerol. These products can be used for energy production or synthetic reactions. Second, MGL degrades 2-arachidonoyl glycerol (2-AG), the most abundant endogenous ligand of cannabinoid receptors (CBR). Activation of CBR affects energy homeostasis by central orexigenic stimuli, by promoting lipid storage, and by reducing energy expenditure. To characterize the metabolic role of MGL in vivo, we generated an MGL-deficient mouse model (MGL-ko). These mice exhibit a reduction in MG hydrolase activity and a concomitant increase in MG levels in adipose tissue, brain, and liver. In adipose tissue, the lack of MGL activity is partially compensated by hormone-sensitive lipase. Nonetheless, fasted MGL-ko mice exhibit reduced plasma glycerol and triacylglycerol, as well as liver triacylglycerol levels indicative for impaired lipolysis. Despite a strong elevation of 2-AG levels, MGL-ko mice exhibit normal food intake, fat mass, and energy expenditure. Yet mice lacking MGL show a pharmacological tolerance to the CBR agonist CP 55,940 suggesting that the elevated 2-AG levels are functionally antagonized by desensitization of CBR. Interestingly, however, MGL-ko mice receiving a high fat diet exhibit significantly improved glucose tolerance and insulin sensitivity in comparison with wild-type controls despite equal weight gain. In conclusion, our observations implicate that MGL deficiency impairs lipolysis and attenuates diet-induced insulin resistance. Defective degradation of 2-AG does not provoke cannabinoid-like effects on feeding behavior, lipid storage, and energy expenditure, which may be explained by desensitization of CBR.


Assuntos
Tecido Adiposo/enzimologia , Dieta , Resistência à Insulina , Lipólise/fisiologia , Monoacilglicerol Lipases/metabolismo , Tecido Adiposo/metabolismo , Animais , Ácidos Araquidônicos/genética , Ácidos Araquidônicos/metabolismo , Endocanabinoides , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Glicerídeos/genética , Glicerídeos/metabolismo , Glicerol/sangue , Camundongos , Camundongos Knockout , Monoacilglicerol Lipases/genética , Receptores de Canabinoides/genética , Receptores de Canabinoides/metabolismo , Triglicerídeos/sangue , Triglicerídeos/genética
10.
J Biol Chem ; 285(10): 7300-11, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20023287

RESUMO

Comparative gene identification-58 (CGI-58), also designated as alpha/beta-hydrolase domain containing-5 (ABHD-5), is a lipid droplet-associated protein that activates adipose triglyceride lipase (ATGL) and acylates lysophosphatidic acid. Activation of ATGL initiates the hydrolytic catabolism of cellular triacylglycerol (TG) stores to glycerol and nonesterified fatty acids. Mutations in both ATGL and CGI-58 cause "neutral lipid storage disease" characterized by massive accumulation of TG in various tissues. The analysis of CGI-58-deficient (Cgi-58(-/-)) mice, presented in this study, reveals a dual function of CGI-58 in lipid metabolism. First, systemic TG accumulation and severe hepatic steatosis in newborn Cgi-58(-/-) mice establish a limiting role for CGI-58 in ATGL-mediated TG hydrolysis and supply of nonesterified fatty acids as energy substrate. Second, a severe skin permeability barrier defect uncovers an essential ATGL-independent role of CGI-58 in skin lipid metabolism. The neonatal lethal skin barrier defect is linked to an impaired hydrolysis of epidermal TG. As a consequence, sequestration of fatty acids in TG prevents the synthesis of acylceramides, which are essential lipid precursors for the formation of a functional skin permeability barrier. This mechanism may also underlie the pathogenesis of ichthyosis in neutral lipid storage disease patients lacking functional CGI-58.


Assuntos
1-Acilglicerol-3-Fosfato O-Aciltransferase , Fígado Gorduroso/metabolismo , Retardo do Crescimento Fetal/fisiopatologia , Pele , Triglicerídeos/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Animais , Animais Recém-Nascidos , Animais Lactentes/fisiologia , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Fígado Gorduroso/genética , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Ictiose/genética , Ictiose/metabolismo , Ictiose/patologia , Lipase/genética , Lipase/metabolismo , Fígado/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Permeabilidade , Pele/química , Pele/patologia , Pele/fisiopatologia , Síndrome
11.
J Lipid Res ; 51(3): 490-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19965578

RESUMO

FAs are mobilized from triglyceride (TG) stores during exercise to supply the working muscle with energy. Mice deficient for adipose triglyceride lipase (ATGL-ko) exhibit defective lipolysis and accumulate TG in adipose tissue and muscle, suggesting that ATGL deficiency affects energy availability and substrate utilization in working muscle. In this study, we investigated the effect of moderate treadmill exercise on blood energy metabolites and liver glycogen stores in mice lacking ATGL. Because ATGL-ko mice exhibit massive accumulation of TG in the heart and cardiomyopathy, we also investigated a mouse model lacking ATGL in all tissues except cardiac muscle (ATGL-ko/CM). In contrast to ATGL-ko mice, these mice did not accumulate TG in the heart and had normal life expectancy. Exercise experiments revealed that ATGL-ko and ATGL-ko/CM mice are unable to increase circulating FA levels during exercise. The reduced availability of FA for energy conversion led to rapid depletion of liver glycogen stores and hypoglycemia. Together, our studies suggest that ATGL-ko mice cannot adjust circulating FA levels to the increased energy requirements of the working muscle, resulting in an increased use of carbohydrates for energy conversion. Thus, ATGL activity is required for proper energy supply of the skeletal muscle during exercise.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Ácidos Graxos/metabolismo , Músculos/metabolismo , Animais , Carboidratos/sangue , Hidrolases de Éster Carboxílico/deficiência , Hidrolases de Éster Carboxílico/genética , Metabolismo Energético , Feminino , Técnicas de Inativação de Genes , Glicogênio/metabolismo , Lipase , Lipídeos/sangue , Fígado/metabolismo , Locomoção , Masculino , Camundongos , Músculos/citologia , Músculos/fisiologia , Mutação , Condicionamento Físico Animal , Descanso
12.
J Biol Chem ; 283(9): 5908-17, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18086666

RESUMO

Neuropathy target esterase (NTE) is a member of the family of patatin domain-containing proteins and exhibits phospholipase activity in brain and cultured cells. NTE was originally identified as target enzyme for organophosphorus compounds that cause a delayed paralyzing syndrome with degeneration of nerve axons. Here we show that the structurally related murine protein NTE-related esterase (NRE) is a potent lysophospholipase. The enzyme efficiently hydrolyzes sn-1 esters in lysophosphatidylcholine and lysophosphatidic acid. No lipase activity was observed when triacylglycerols, cholesteryl esters, retinyl esters, phosphatidylcholine, or monoacylglycerol were used as substrates. Although NTE is predominantly expressed in the nervous system, we found the highest NRE mRNA levels in testes, skeletal muscle, cardiac muscle, and adipose tissue. Induction of NRE mRNA concentrations in these tissues during fasting suggested a nutritional regulation of enzyme expression and, in accordance with this observation, insulin reduced NRE mRNA levels in a dose-dependent manner in 3T3-L1 adipocytes. A green fluorescent protein-NRE fusion protein colocalized to the endoplasmic reticulum and lipid droplets. Thus, NRE is a previously unrecognized ER- and lipid droplet-associated lysophospholipase. Regulation of enzyme expression by the nutritional status and insulin suggests a role of NRE in the catabolism of lipid precursors and/or mediators that affect energy metabolism in mammals.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Metabolismo dos Lipídeos/fisiologia , Lisofosfolipase/biossíntese , Células 3T3-L1 , Animais , Axônios/enzimologia , Encéfalo/enzimologia , Hidrolases de Éster Carboxílico/genética , Relação Dose-Resposta a Droga , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/genética , Jejum/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Lisofosfatidilcolinas/genética , Lisofosfatidilcolinas/metabolismo , Lisofosfolipase/genética , Lisofosfolipídeos/genética , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Especificidade de Órgãos/fisiologia , Paralisia/enzimologia , Paralisia/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Especificidade por Substrato/fisiologia , Síndrome
13.
Curr Opin Lipidol ; 13(5): 471-81, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12352010

RESUMO

PURPOSE OF REVIEW: The aim of this review is to summarize and discuss recent advances in the understanding of the physiological role of lipoprotein lipase in lipid and energy metabolism. RECENT FINDINGS: Studies on the transcriptional and the posttranscriptional level of lipoprotein lipase expression have provided new insights into the complex mechanisms that are involved in the regulation of the enzyme. Additionally a large body of evidence from both human studies and animal models suggests that the level of lipoprotein lipase expression in a given tissue is the rate limiting process for the uptake of triglyceride derived fatty acids. Imbalances in the partitioning of fatty acids among peripheral tissues have major metabolic consequences. For example, in mice both decreased lipoprotein lipase activities in adipose tissue and increased activity in muscle are associated with resistance to obesity; lack of lipoprotein lipase activity in macrophages is correlated with a decreased susceptibility to develop atherosclerotic lesions and overexpression of the enzyme in muscle is associated with increased blood glucose levels and insulin resistance. SUMMARY: Considering the central role of lipoprotein lipase in energy metabolism it is a reasonable goal to discover and develop new drugs that affect the tissue specific expression pattern of the enzyme.


Assuntos
Metabolismo Energético , Regulação Enzimológica da Expressão Gênica , Metabolismo dos Lipídeos , Lipase Lipoproteica/genética , Lipase Lipoproteica/metabolismo , Animais , Arteriosclerose/enzimologia , Arteriosclerose/metabolismo , Humanos , Obesidade/enzimologia , Obesidade/metabolismo , Especificidade de Órgãos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...